Both liquid and solid containers undergo a volume change with a change in temperature.
Consider a certain amount of a given liquid that is present within a container. In order to study the liquid expansion as we vary its temperature, we take the liquid system + container to be heated by a flame (figure above). The process can be described in parts:
To calculate the apparent expansion, simply fill a container until its brim with a given liquid and then heat the system. The volume poured out will be in the amount of liquid that has apparently dilatated. But as the container also dilatates, allowing more liquid to be stored, then, in fact, the liquid has dilatated more than the volume that has been spilled. Thus, the formula for dilatating a liquid in a container needs to take into account the dilatation of the container, hence:$$\Delta V_{liquid} = \Delta V_{apparent} + \Delta V_{vessel},$$ where \(\Delta V_{liquid} = \) full expansion of the liquid, \(\Delta V_{vessel} = \) dilation of the vessel and \(\Delta V_{apparent} = \) the swelling that the liquid appears to have suffered (poured volume).
Water behaves uncommonly, unlike most other substances. The water shrinks as it approaches the temperature of 4 °C. Still in the liquid phase, at 4 ºC it reaches the maximum density: \(1.0 g/cm^3\). Most of the substances usually have their maximum density in the solid phase. This is why ice (solid phase) floats in water (liquid phase). This behavior of water is essential to the maritime life of cold places. When a lake begins to freeze, ice floats, allowing maritime life to continue to exist beneath the surface layer of ice.